AdobeStock_195109897-1080x675

Pollination

Pollination by commercial pollinators is an important part of integrated orchard management. Orchard design (polliniser selection and placement), flower management (pruning and thinning), alternative feed control, and the right introduction and use of optimum strength honeybee colonies are all necessary for a good fruit set.

In South Africa, there is very little published information or scientific data on commercial pollination of deciduous fruit crops. The majority of practices are founded on personal experience and anecdotal evidence. This dilemma is being addressed by a current DFPT study that is evaluating basic pollination concepts. This article should only be used as a DIRECTIVE and should be updated if new information becomes available.

Pollination is the transport of pollen from the male anther to the female stigma of the flower, and it is one step in a multi-stage process that results in the formation of seed or fruit. Insects, birds, mammals, wind, water, and gravity are some of the agents (pollinators) that cause pollen to be transferred. Insects and wind are the two most important agents. Most fruit, seed, and berry crops rely on insects, particularly honeybees, to assure fruit or seed is set to a lesser or larger extent.

What Pollinates Deciduous Fruit Crops in South Africa?

Insect pollination accounts for around 85 percent of all pollination, with honeybees accounting for about 80 percent of all insect pollination. Honeybees have evolved to be successful pollinators, with finely branched hairs that generate static electricity, allowing them to collect up to 40 000 pollen grains on their bodies, pollen baskets to collect pollen, and a high desire for pollen and nectar. Pollination relies on both nectar-gathering and pollen-gathering honeybees, with the latter being more significant. Approximately one-third of the foods we eat originates from crop plants pollinated by honeybees, either directly or indirectly. The value of fruit, vegetables, and seeds pollinated directly by bees is roughly 150 times that of bee products. In South Africa, the value contributed to crops by using honeybees for paid pollination exceeds R4 billion per year, with deciduous fruit crops accounting for over R2 billion.

Many gardeners assume that pollination of their crops by “other pollinators” is sufficient. This may have been true in the past, however insects other than honeybees now only play a minor role in pollination. Honeybees accounted for 94-98 percent of all insect visitation to deciduous fruit trees in the Boland, while honeybees made up more than 98 percent of actively pollinating insects, according to recent statistics. Due to growing habitat degradation and pesticide load, “natural” pollinators are becoming increasingly scarce and unimportant. There are no other “commercial” pollinators, such as leafcutter bees or bumblebees, that may be used in South Africa. A healthy honeybee population and a viable beekeeping enterprise are nearly entirely dependent on the deciduous fruit industry.

Why commercial pollination?

The introduction of commercial honeybees for pollination increases fruit set, fruit weight, and fruit quality in practically all deciduous fruit species and cultivars, according to substantial data. After successful pollination, the fertilized ovule develops into a seed, which contains an embryo (formed from the fusing of one male nucleus with the female egg) and endosperm. The endosperm not only feeds the embryo during its development, but it also secretes hormones that regulate the embryo’s growth as well as the growth and shape of the fruit, as well as the retention of the developing fruit. In apples and pears, seed hormones are especially important because poor pollination results in low seed counts, which causes fruit drop and deformed fruit. While having ten seeds in each fruit is not required, the more seeds generated, the more export-quality fruit produced, and the better the pollination, the more seeds produced. Successful pollination is linked to: (a) fruit set; (b) the percentage of fruit that does not drop; (c) the effectiveness of chemical thinning; (d) fruit size; (e) fruit shape; and (f) fruit quality and shelf life.

Honeybee Behaviour

Some basic principles regarding honeybee foraging behavior are important in optimizing the performance of honeybee colonies in commercial pollination. Foremost among these is that honeybees forage on flowers only for a reward of pollen and/or nectar; pollination is a fortuitous consequence of the foraging. Honeybees are able to detect minor differences in the sugar concentration present in nectar, and in the protein content in pollen, and for the most part will forage on the most rewarding resource available. Nectar in apples and plums is relatively poor in both sugar content and quantity, with normally only enough nectar to sustain colonies and not enough for a honey surplus. Apple and plum nectar levels are inferior to those of common weeds such as Cape Weed (Gousblom) and Wild Radish (Ramenas). Pear flowers have extremely poor nectar, both in sugar content and quantity, and are not very attractive to foraging honeybees. All apples, plums, and pears have pollen that is readily collected by honeybees but is not as attractive as that of common weeds. It is because the reward provided by deciduous fruit crops is less than that of common weeds that the practice of introducing naïve bees (colonies introduced during blossom) has become standard in commercial pollination. The rationale is that by introducing honeybee colonies when target crops are already 20% or more in bloom, that this will result in foragers working on the inferior-quality target crop for a number of days at least while other foragers locate better quality forage crops, to which the foragers will then switch. Recent results indicate that bees might not switch as readily as thought, and if confirmed, these practices (i.e. the use of naïve bees) might need to be reviewed.

Notwithstanding the ability of honeybees to assess forage quality and to rapidly direct foragers to more fruitful resources, individual honeybee foragers are remarkably flower constant and area constant. At any one time, the field force of a honeybee colony will demonstrate a preference for a number of forage species, but individual foragers will tend to work only on a single forage species until that forage type becomes unavailable or unrewarding, and will only “switch off” this forage if markedly better forage becomes available. Individual honeybee foragers will also tend to work in a small forage area of about 10m2, returning to the same tree or to adjacent ones on successive foraging trips. This also means that in the repeated use of the same colonies for pollination, colonies should be moved a minimum of 3km, to prevent foragers from returning to the old colony position.

In summary: Relatively few foragers from any colony will be active on the relatively poor quality deciduous fruit crop but those that there are will not readily leave. If they do, however, they will not easily return. All efforts at management to improve commercial pollination should bear these principles in mind.

Pollination Principles

Making arrangements for insect pollination is standard practice in the growing of many crops. Scientific information on the management practices to be followed is very limited and is largely based on experience and anecdotal evidence. Furthermore, there is very little local information available and most data is from temperate regions. The following are the suggested best management practices for commercial pollination in deciduous fruit orchards in South Africa, based on available information, and with the objective of optimal delivery of the correct pollen to the target crop.

When: It has generally been considered best practice to introduce honeybee colonies at 20-30% blossom. However, because flowers are often most receptive on the day that they open and are often only receptive for 2-3 days, and because recent data indicate that colonies require at least 24 hours to settle down and resume normal foraging after introduction, it is recommended that colonies be introduced at 10% blossom. There is also no value in keeping honeybee colonies in the orchard for longer than is needed, and colonies should be removed as soon as possible after full bloom, and by a 30% petal drop at the latest.

Where: Conventional wisdom is that honeybee colonies should be placed in the full sun or semi-shade, protected from the wind, and placed on stands of some sort to keep them off the damp ground. Recent data suggests that this is less important than previously imagined. Common sense should prevail. In extremely cold conditions, bees should be placed in the full sun; under very hot conditions, in the shade. Semi-shade is probably best for non-extreme conditions. The site should always be dry and out of the prevailing wind. It is apparent that intra-hive conditions, in particular ventilation, will have a significant impact on foraging rates. The type of hive material used (marine-ply, pine) and the size of the colony entrance are most important. A poorly ventilated or overly insulated hive might have difficulty keeping cool in the heat of the day, resulting in bees clustering outside the hive to keep cool, and this reduces foraging rates. Similarly for overly ventilated or under-insulated hives during the early morning or evenings. The condition and type of hives used should be considered in determining the optimum position to place the hives. Also take into account the movement of people, animals, vehicles and the planned spray program in the placement of colonies. It is recommended that colonies should be placed singly or in small groups of 2/3 colonies, and evenly distributed around the orchard. Where possible, colonies should be placed near pollinizers, to facilitate cross-pollination. Colonies should be placed at the end of rows of trees, particularly with hedgerow systems, as bees forage down rows and are 10-30 times more likely to move to the next tree in the row than to move between rows. Where possible, place colonies away from the immediate edge of the orchard, as this helps in the dispersal of foragers throughout the orchard. Colonies, however, should be placed no further than 100m from the target crop as the number of foragers decreases rapidly with distance, especially in bad weather, and there should not be windbreaks between the colonies and the target crop. If rows are greater than 100m in length, colonies should be placed at both ends.

How: Honeybee colonies should be introduced at night whenever possible, or in bad weather conditions when no or a minimum of bees are foraging, and with traveling screens or other means of adequate ventilation to prevent overheating and to allow colonies to settle down and resume foraging as quickly as possible. Each time a colony is moved there are forager losses and a decrease in the strength of the colony and it is recommended that colonies are used not more than three times for deciduous fruit pollination during a season. How many: It makes little sense to have hard and fast rules as regards the numbers of honeybee colonies needed for the pollination of a particular crop, as the numbers of foragers needed are influenced by the cultivar type, the age of the trees, by the weather and by local conditions. There is little hard data on the number of colonies needed or the direct impact of increasing colony numbers, and most recommendations are based on experience and assumptions. The critical factor is the number of blossoms in the orchard and ensuring that sufficient honeybee foragers are present for multiple visits to each flower. Standard recommendations regarding the numbers of colonies needed are presented in Table 1, but it should be remembered that the more colonies present the more foragers there are available, and it is better for a crop to be too heavy than too light. Waves: It is recommended that difficult cultivars such as ‘Packham’s Triumph’receive two waves of honeybee colonies for pollination, the first at 10-20% blossom and the second at 60-70% blossom and no more than 7 days later. The rationale is that the “naïve foragers” of the first wave will work on the pear blossoms for only a few days and will then “switch off” and begin working on more attractive alternative forage in the vicinity. Hence the second wave, introduce a second set of naïve foragers to prolong the foraging on the pears. The value of sequential colony introductions is presently being carefully researched, and it is clear that honeybee foragers do not abandon pear blossoms as readily as was supposed. Results regarding the use of two waves in pear pollination obtained during the 2004 and 2005 seasons have been somewhat contradictory to established principles, and if confirmed, these practices might need to be revised.

Competitive forage: Many weeds are common in orchards, such as the Cape Weed (Gousblom), “bloublommetjies” (Echium), and Wild Radish (Ramenas), are highly attractive to honeybees and offer better rewards than do deciduous fruit flowers, especially pear blossom. These weeds as well as any other attractive bee forage should be removed to prevent them from drawing foraging bees away from the target crop. Recent data suggests that it is not critically important that ALL alternative forage be removed because some foragers attend to the fruit blossoms even in presence of more attractive alternatives. Excessive alternative forage will present a problem, however, and alternative forage should be removed as far as is feasible. Chemical control of weeds can be practiced before blossom time, but thereafter mechanical control should be used.

Pesticides: In any discussion on the impact of pesticide application on honeybees during commercial pollination two factors should be remembered. Namely, that deciduous fruit flowers are relatively unattractive to honeybees and secondly, those honeybee foragers discouraged from foraging in an orchard because of the application of a pesticide will not readily return after they have “locked onto” an alternative forage source. It follows that while it is accepted that modern agriculture requires pest control, it is probable that all pesticide applications immediately before or during blossom time are disadvantageous to the bees used for pollination, or to the pollination process. Great care should be taken in the choice of pesticides, and in the decision to spray, and the question should also be asked: IS THIS ABSOLUTELY NECESSARY DURING BLOSSOM TIME? If pesticide applications are unavoidable, use the least toxic or repellant pesticide or formulation available, and apply at night and away from the honeybee colonies to have as little effect as possible. Try not to spray anything in the first 3 days after the introduction of honeybees, and do not keep colonies in orchards longer than necessary.

Different classes of pesticides have differing effects on honeybees and on pollination. All pesticides have been classified as either harmless to honeybees, moderately harmful to honeybees, or extremely harmful to honeybees. If there is the uncertainty of the bee hazard classification of a remedy the registration holder of such remedy should be contacted. Products extremely toxic to foraging honeybees may cause a knockdown of foragers in the orchard or mass mortality at the colonies. Large numbers of dead bees on the orchard floor, or large numbers of crawling bees around the colony entrance, are almost always the result of pesticide poisoning. The use of insect growth regulators or microencapsulated insecticides may be equally deleterious to honeybees, and in all cases, the use of such harmful products should not take place until honeybee colonies have been removed from the vicinity. Moderately harmful pesticides will typically cause some mortality in the colonies which will normally disappear after 24 hours and can be used without removing the colonies from the orchard. The application should be at night to lessen the effect.

Products often regarded as harmless to honeybees (e.g. herbicides, fungicides, foliar sprays) may have a repellency effect, retarding the entry of foraging bees into the orchard and resulting in them failing to return. Practically anything can have a repellent effect on foraging bees, even the spraying of water. Although the honeybee colonies are seldom negatively affected by repellency, the result of repellency is a decrease in pollination efficacy and a reduction in fruit set.

Three final factors should be considered with regards to pesticide applications. Firstly, remember your neighbor. The application of a toxic pesticide may result in honeybee mortality in neighboring orchards or properties, even if the colonies from the target orchard have been removed. Secondly, remember that successful pollination is the result of cooperation between growers and beekeepers, who should be informed timeously and in detail about all pesticide applications. Finally, be aware that spraying before and after bee introduction may cause damage to “natural” pollinators and be beneficial, reducing future pollination potential.

Pollinizers: As almost all modern cultivars of deciduous fruit are self-incompatible, having the correct pollinisers in an orchard is critically important in setting an economic crop. The most critical factor in the choice of cultivar is overlapping flowering time; if anything, the polliniser should finish flowering just before the main cultivar finishes. As cultivars can vary greatly in terms of nectar quality and quantity, it is also important that the polliniser and the main cultivar are similarly attractive to honeybees, to facilitate cross pollination. The best planting pattern of the pollinisers in the orchard has been the subject of much debate and is presently being researched, but as yet there is insufficient data to deliver definitive answers, particularly with the hedgerow systems now being used. What is clear, however, is the tremendous local effect of pollinisers on fruit sets. John Free (1962) demonstrated that the fruit set on the near-side of trees adjacent to a polliniser was far greater than the fruit set on the far side of the same trees, proving that even a small increase in distance from the polliniser results in a significant decrease in fruit set. Similar results were obtained by Anderson (1985) in South Africa with fruit set on the near-side of the polliniser being 22% greater than that on the far-side. As the distance from the polliniser is obviously critically important in fruit set pollinisers should be evenly distributed in the orchard as far as possible, and as abundant as is economically feasible. For orchards with insufficient or poorly positioned pollinisers, the only short-term solution is increasing the numbers of pollinators (honeybees) in the orchard during blossom. The extremely significant impact of distance from the polliniser on fruit set and the difficulty in providing sufficient pollinisers in an orchard suggest, however, that emphasis should be placed on developing more effective long-term methods in distributing polliniser pollen throughout the orchard.

We'd be delighted to hear from you.

Please contact us by phone, email, or social media if you have any questions or suggestions.

African Beekeeping Solutions offers excellent products and services to beekeepers of all levels. I had never managed bees before, and William helped me get started with information and instruction. William is an expert on all things bee-related and provides step-by-step guidance to ensure your beekeeping success! Any inquiries you may have are swiftly and thoroughly answered to assist you in taking care of your bees. The hives are attractively built and would look excellent in your yard. African Beekeeping Solutions makes it possible for me to have a little urban beehive in my garden. I strongly advise everyone interested in or active in beekeeping to check out African Beekeeping Solutions!

Christian